Wireless Connectivity Knowledge Base

cancel
Showing results for 
Show  only  | Search instead for 
Did you mean: 

Wireless Connectivity Knowledge Base

Discussions

Sort by:
The MCX W23 is a family of devices. All devices are Arm Cortex®-M33 based wireless microcontrollers for embedded applications supporting Bluetooth Low Energy 5.3. It can be used to develop IoT solutions. MCX W23xA supports LV_SM mode. MCX W23xB supports HV_SM and XR_SM mode. These devices include: • Up to 128 kB of on-chip SRAM • Up to 1024 kB on-chip flash • Quad SPI interface for operation from external SPI NVM • Five general-purpose timers (CTIMER) • One SCTimer/PWM • One RTC/alarm timer • One 24-bit multirate timer (MRT) • Windowed watchdog timer (WWDT) • Three flexible serial communication peripherals (each of which can be a USART, SPI, or I2C interface) Building on NXP's strong history of providing industrial edge solutions, the MCX W series offers a wide operating temperature range from -40 °C to 125 °C . The Arm Cortex-M33 provides a security foundation, offering isolation to protect valuable IP and data with TrustZone technology. It simplifies the design and software development of digital signal control systems with the integrated digital signal processing (DSP) instructions. To support security requirements, the MCX W23 also offers support for SHA-1, SHA2-256, AES, RSA, ECC, UUID, dynamic encryption, and decryption of the flash data using a PRINCE engine, debug authentication, and TBSA-M compliance.   Bluetooth Specifications The MCX W23 is compatible with the Bluetooth Low Energy 5.3 specification: – Bluetooth Low Energy 5.3 controller subsystem (QDID 200592) – Bluetooth Low Energy 5.3 host subsystem (QDID 226395) – Includes a 48-bit unique bluetooth device address – Up to 4 simultaneous connections supported The MCX W23 supports the following Bluetooth Low Energy features: – Device privacy and network privacy modes (version 5.0) – Advertising extension PDUs (version 5.0) – Anonymous device address type (version 5.0) – Up to 2 Mbps data rate (version 5.0) – Long range (version 5.0) – High-duty cycle, nonconnectable advertising (version 5.0) – Channel selection algorithm #2 (version 5.0) – High output power (version 5.0) – Advertising channel index (version 5.1) – Periodic advertising sync transfer (PAST) (version 5.1) – Supports LE power control feature (version 5.2) RF antenna: 50 Ω single-ended RF receiver characteristics: – Sensitivity −94 dBm in Bluetooth Low Energy 2 Mbps – Sensitivity −97 dBm in Bluetooth Low Energy 1 Mbps – Sensitivity −100 dBm in Bluetooth Low Energy 500 kbps – Sensitivity −102 dBm in Bluetooth Low Energy 125 kbps – Accurate RSSI measurement with ±3 dB accuracy Flexible RF transmitter level configurability: – TX mode 1 (TXM1): Range from −31 dBm to +2 dBm when VDD_RF exceeds 1.1 V – TX mode 2 (TXM2): Range from −28 dBm to +6 dBm when VDD_RF exceeds 1.7   Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview   Training MCX W Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development    Useful Links   Development Tools  NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode: MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs  NXP Application Code Hub: Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board. Support If you have questions regarding MCX W23, please leave your question in our Wireless MCU Community! here
View full article
The RW61x series is a highly integrated, low-power tri-radio wireless MCU with an integrated MCU and Wi-Fi ®  6 + Bluetooth ®  Low Energy (LE) 5.4 / 802.15.4 radios designed for a broad array of applications, including connected smart home devices, enterprise and industrial automation, smart accessories and smart energy. The RW61x series MCU subsystem includes a 260 MHz Arm ®  Cortex ® -M33 core with Trustzone ™ -M, 1.2 MB on-chip SRAM and a high-bandwidth Quad SPI interface with an on-the-fly decryption engine for securely accessing off-chip XIP flash. The RW61x series includes a full-featured 1x1 dual-band (2.4 GHz/5 GHz) 20 MHz Wi-Fi 6 (802.11ax) subsystem bringing higher throughput, better network efficiency, lower latency and improved range over previous generation Wi-Fi standards. The Bluetooth LE radio supports 2 Mbit/s high-speed data rate, long range and extended advertising. The on-chip 802.15.4 radio can support the latest Thread mesh networking protocol. In addition, the RW612 can support Matter over Wi-Fi or Matter over Thread offering a common, interoperable application layer across ecosystems and products. NXP RW61x Block Diagram Documents RW610 Datasheet: RW610 Datasheet RW612 Datasheet: RW612 Datasheet RW61x User Manual: UM11865: RW61x User Manual RW61x Register Manual: RM00278: RX16x Registers     RW61x Modules Azurewave: RW612 - AW-CU570is a highly integrated, low-power tri-radio Wireless RW612 MCU with an integrated MCU and Wi-Fi 6 + Bluetooth Low Energy (LE) 5.2 / 802.15.4 radios designed for a broad array of applications. RW610 - AW-CU598 is a highly integrated, low-power tri-radio Wireless RW610 MCU with an integrated MCU and Wi-Fi 6 + Bluetooth Low Energy (LE) 5.3 radios designed for a broad array of applications U-blox: RW612 - IRIS-W10 Series are small, stand-alone, dual-band Wi-Fi and Bluetooth Low Energy wireless microcontroller unit (MCU) modules. The modules are ideal for users looking to add advanced wireless connectivity to their end products. RW610 - IRIS-W16 Series are small, stand-alone, dual-band Wi-Fi and Bluetooth Low Energy wireless modules, with everything needed for integration into end-products. The modules are ideal for users looking to add advanced wireless connectivity to their end products.  Murata: RW612 - LBES0ZZ2FR-580 Murata’s Type 2FR is a small and very high-performance module based on NXP RW612 combo chipset, supporting IEEE 802.11a/b/g/n/ac/ax + Bluetooth LE 5.4 / IEEE 802.15.4. RW610 - LBES0ZZ2FP-580 Type 2FR/2FP is a family of small and highly integrated multi-radio modules with built-in high-performance MCU with advanced security features for connected smart devices in smart homes, enterprise and industrial automation, smart accessories, and smart energy. It supports the latest Matter smart home connectivity protocol. California Eastern Laboratories (CEL): RW612 - CMP4612 is a fully integrated Dual-Band, Tri-mode (Wi-Fi 6, BT5.4, 802.15.4) radio, that includes a host MCU, Flash, RAM, peripherals, and numerous interfaces (SDIO, UART, USB, Ethernet. SPI, I2C) to support both HOSTLESS (RTOS) and HOSTED (NCP mode) architectures. CEL's solution includes either an on-board antenna or connector.   Evaluation boards  FRDM-RW612 FRDM-RW612 is a compact and scalable development board for rapid prototyping of the RW61x series of Wi-Fi 6 + Bluetooth Low Energy + 802.15.4 tri-radio wireless MCUs. It offers easy access to the MCU’s I/O's and peripherals, integrated open-standard serial interfaces, external flash memory and on-board MCU-Link debugger. FRDM-RW612 Getting Started Getting Started with FRDM-RW612 FRDM-RW612 User Manual: UM12160: FRDM-RW612 Board User Manual FRDM-RW612 Quick Start Guide FRDM-RW612 Quick Start Guide Current Measurement configuration: Remove the 0-ohms resistor R103 Solder a couple of pins in JP5. When trying to measure the RW61x current consumption, connect your current meter using the pins in JP5. When using the FRDM board in normal operation, connect a jumper to the pins in JP5.   u-blox   USB-IRIS-W1 The USB-IRIS-W1 development platform is built on the dual-band Wi-Fi 6 and Bluetooth LE module IRIS-W1, based on the NXP RW610/612 chip. The board is designed with a USB interface to simplify evaluation and prototyping directly from a PC. In addition to the IRIS-W1 module with integrated antenna, it also integrates four buttons, an RGB LED, and a USB/UART converter, to further support an easy evaluation. u-blox   EVK-IRIS-W1 The EVK-IRIS-W1 evaluation kit provides stand-alone use of the IRIS-W1 module series featuring the NXP RW610/612 chipset. Azurewave    AW-CU570-EVB Evaluation board for AW-CU570 module includes wireless MCU with Integrated Tri-radio Wi-Fi 6 + Bluetooth Low Energy 5.3 /802.15.4. Murata   2FR EVK Evaluation kit for Murata Type 2FR module (Murata part number LBES0ZZ2FR) includes 3 radios: Wi-Fi, BLE and 802.15.4. It is based on NXP’s RW612 chip. California Eastern Laboratories (CEL) CMP4612-2-EVB The CMP4612 Evaluation Board (CMP4612-2-EVB), based on the NXP RW612 chipset, features dual-band Wi-Fi 6, BLE 5.4 and 802.15.4 radios. The CMP4612 Evaluation Board includes an onboard Ethernet port and PHY hardware as well as an Arduino header, MCULink SWD, and USB ports. This board is designed to facilitate a seamless and efficient evaluation process for customers wanting a certified module for their end product.   Application Notes RM00287: Wi-Fi Driver API for SDK 2.16.100     The radio driver source code provides APIs to send and receive packets over the radio interfaces by communicating with the firmware images. This manual provides the reference documentation for the Wi-Fi driver and Wi-Fi Connection Manager.  UM12133: NXP NCP Application Guide for RW612 with MCU Host - User manual     This user manual describes: • The NXP NCP application for RW612 with MCU host platform i.MX RT1060 as example. • The hardware connections for one of the four supported interfaces to enable NCP mode on the NXP RW612 BGA V4 board (UART, USB, SDIO, or SPI). • The method to build and run the NCP applications on both the NCP host (i.MX RT1060) and the NCP device (RW612). The applications apply to Wi-Fi, Bluetooth Low Energy and OpenThread (OT)    UM12095:  NXP NCP Application Guide for RW612 with MPU Host - User manual      This user manual describes: • The NXP NCP application for RW612 with MPU host platform i.MX 8M Mini as example. • The hardware connections for one of the four supported interfaces to enable NCP mode on the NXP RW612 BGA V4 board (UART, USB, SDIO, or SPI). • The method to build and run the NCP applications on both the NCP host (i.MX 8M Mini) and the NCP device (RW612). The applications apply to Wi-Fi, Bluetooth Low Energy and OpenThread (OT).  AN14439: Migration Guide from FRDM-RW612 Board to Third-Party Module board This Application note provides an overview of what it means to migrate the application to a different board with different flash and pSRAM AN14111: Target Wake Time (TWT) on RW16x This application note describes the target wake time feature and provides examples for RW61X AN13006: Compliance and Certification Considerations This application note provides guidance and tips on how to test products on NXP Wi-Fi devices for regulatory compliance. AN13049: Wi-Fi/Bluetooth/802.15.4 M.2 Key E Pinout Definition This Application note defines M.2 usage for both NXP Wi-Fi/Bluetooth and Tri-Radio M.2 module design Security: AN14544 – EdgeLock 2GO Services for MPU and MCU This application note introduces various methods that the EdgeLock 2GO service can be used with MCU and MPU devices and the features available for each method. AN13813 – Secure Boot on RW61x Describes how to generate and run the secure boot (signed image) on RW61x. AN13814 – Debug Authentication on RW61x Describes the steps for debug authentication using the secure provisioning SDK tool.   Community Support If you have questions regarding RW61x series, please leave your comments in our Wireless MCU Community! here    Training FRDM-RW612 Training Wi-Fi 6 Tri-Radio in a secure i.MX RT MCU RW61x Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the wireless equipment to help you accelerate your project development Development Tools  SDK builder  The MCUXpresso SDK brings open-source drivers, middleware, and reference example application to speed your software development. NXP MCUXpresso MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging and supports connections with all general-purpose Arm Cortex-M.  VSCode MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOS  The Zephyr OS is based on a small-footprint kernel designed for use on resource-constrained and embedded systems: from simple embedded environmental sensors and LED wearables to sophisticated embedded controllers, smart watches, and IoT wireless applications. NXP Application Code Hub Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool Is an application that helps the user to perform an over the air firmware update of an NXP development board. SDK Examples for Wireless MCUs The wireless examples feature many common connectivity configurations.   Useful Links     Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview  
View full article
The customer wanted to update the FW of the PN7462 to an NFC cockpit. In general, we recommend that customers use MASS STORAGE MODE to update two files (including Flash and EEPROM) into memory. But there will always be customers who don’t know or how to successfully access MASS STORAGE MODE. They cannot succeed in doing so. Therefore, it is recommended to use the GUI FLASH tool to upgrade the FW to the NFC cabin. In order to clearly indicate the user how to use the GUI FLASH tool, this document describes this step by step.
View full article
The customer submitted a case through DFAE to seek support from NXP. They designed the product using PN5180, and according to feedback, about 10% of the boards could not read the card. The specific manifestation of the problem is: after the host issues the RF_ON command, RF field seems cannot be turned on and then fails to detect the card. Therefore, it can be seen that the problem should be on TX, not RX. The customer's device does not enable DPC and LPCD.
View full article
The MCX W72x family features a 96 MHz Arm® Cortex®-M33 core coupled with a multiprotocol radio subsystem supporting Matter, Thread, Zigbee and Bluetooth LE. The independent radio subsystem, with a dedicated core and memory, offloads the main CPU, preserving it for the primary application and allowing firmware updates to support future wireless standards. The MCX W72x also offers advanced security with an integrated EdgeLock® Secure Enclave Core Profile and will be supported by NXP's EdgeLock 2GO cloud services for credential sharing. The MCX W72x family includes Bluetooth Channel Sounding capabilities, with a dedicated on-chip Localization Compute Engine to reduce ranging latency. It incorporates additional memory to support application-specific code, connectivity stacks and over-the-air firmware updates. In addition, the radio subsystem can run the full Thread or Zigbee stack alongside the Bluetooth Low Energy stack. This delivers reliable wireless performance, as the real-time activities of the radio run on a separate core from the application. Building on NXP's strong history of providing industrial edge solutions, the MCX W series offers a wide operating temperature range from -40 °C to 125 °C and peripherals for industrial applications, including an optional CAN interface and will be part of NXP's 15-year Product Longevity program to support long-term industrial use. The MCX W series is supported by the MCUXpresso Developer Experience to optimize, ease and help accelerate embedded system development. The MCX W72x is in pre-production, developers can get started today with the MCX W71x, which is pin and software compatible.       Channel Sounding  Channel Sounding Introduction presentation   Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview   Bluetooth Training Bluetooth Low energy 6.0 NXP Introduction   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development    Useful Links The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial)... Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device.Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands. Kinetis (K32/38/KW45 & K32W1/MCXW71) Power Profile Tools:  This page is dedicated to the Kinetis (KW35/KW38/KW45) and MCX W7x (MCX W71) Power Profile Tools. It will help you to estimate the power consumption in your application (Automotive or IoT) and evaluate the battery lifetime of your solution.
View full article
Generality on the Oscillation Margin Outline It is a margin to the oscillation stop and the most important item in the oscillation circuit. This margin is indicated by ratio based on the resistance of crystal, and it shows how amplification oscillation capability the circuit has. The oscillation circuit can theoretically operate if the oscillation margin is 1 or more. However, if oscillation margin is close to 1, the risk of operation failure will increase on module due to a too long oscillation start up time and so on. Such problems will be able to be solved by a larger oscillation margin. It is recommended to keep 3 times or more as oscillation margin during the startup of the oscillation. Factor of 10 is commonly requested for Automotive at startup and steady state. 5 is enough for IoT market. However, some providers accept to have 3 times as oscillation margin for steady state. Here below is an oscillation example to explain better the phenomenon: At start up, the configuration is set internally by the hardware in order to be sure to start the oscillation, the load capacitor is 0pF. After this time, it is the steady state and the load capacitor from the internal capabank is taken into account.   If load capacitor is not set correctly with the right oscillator gain, the oscillation will not be maintained after the start up.   The oscillator gain value will also depend on the resisting path on the crystal track.  A good way to evaluate it is to add a resistor on the crystal path and try to launch the oscillation. In the SDK, the gain and the load capacitor can set directly in the application code. Calculation The oscillation margin is able to be calculated as follows: The oscillation margin calculation is based on the motional resistor Rm by formula below : ESR: Crystal Equivalent Series Resistance C0: Shunt Capacitance Rm1: Motional resistor Cm1: Motional Capacitance Lm1: Motional Inductance fosc: oscillation frequency, measured with Rs_Max mounted fr: resonance frequency of the Rm1Lm1Cm1 of the crystal from (1) :    Oscillation margin is:                     Example: for the EVK board’s 32kHz crystal (NX2012SE) ESR    80000,0 Ω Rm1    79978,2 Ω Lm1    3900 H Cm1   6,00E-15 F C0      1,70E-12 F CL      1,25E-08 F fr        32901,2 Hz fosc    32771 Hz Series Resistor Rsmax        7,50E+05 Ω Oscillation Margin   10,3   Measurement Requirements for measurement PCB (for the test, it is recommended to add a series resistor on the EXTAL32k trace) Crystal unit (with equivalent circuit constants data) Resistors (SMD) Measurement equipment (Oscilloscope, Frequency counter or others capable to observe oscillation) Add a resistor to the resonator in serial and check if the oscillation circuit works or not.   If the oscillation is confirmed by 2), change the resistor to larger. If there is no oscillation, change the resistor to smaller. Find out the maximum resistor (=Rs_max) which is the resistor just before the oscillation stops. Measure the oscillating frequency with Rs_max. Calculate the oscillation margin based on the Rs_max.   Notes The Oscillation margin is affected not only by crystal characteristics but also parts that compose the oscillation circuit (MCU, capacitor and resistor). Therefore, it is recommended to check the oscillation margin after the MCU functionality is checked on your module. The series resistor is only for evaluation. Please do not use this resistor in actual usage. It is recommended to check the functionality of your module also. It is possible that the module does not work correctly due to a frequency shift on oscillation circuit and so on. A test jig and socket could be used in measurement but stray of them will give influence for oscillation margin.   KW47/MCX W72 product oscillation margin overview 32MHz crystal NXP recommends to use the quartz NDK NX1612SA 32MHz (EXS00A-CS15781) to be compliant with the +/-50ppm required in Bluetooth LE. Using the current SDK, NXP guarantees an oscillation margin of 10 for startup and steady state commonly used by Automotive customers. Higher oscillation margin can be reached by using higher ISEL and CDAC parameters with some drawback respectively on the power consumption and the clock accuracy. ( the load capacitance bank (CDAC) and the oscillator amplifier current (ISEL)) NDK recommended / target values for oscillation margin is informed case by case. On a general basis, the requested oscillation margin has to be between the recommended value and 3 times this value. "NDK quartz provider (FR) explains this oscillation margin specification is only mandatory at the start-up phase, not at the steady state. Starting the oscillation is the phase that needs more energy. That's why the gain of the oscillator gain is at the maximum value which means not optimal consumption. When the oscillation stability is reached, the gain could be reduced to save power. The oscillation will not be affected.  Keep in mind a quartz oscillates by mechanical effect. So, when the oscillation is starting you need the highest energy to emulate it. By its own inertial, you need less energy to maintain the mechanical oscillation. NDK provides a good picture of this. Starting up a crystal into oscillation is like a train what you would like to start moving. At the beginning the train is stopped and you need a lot of energy to start running. When the train is running at its nominal speed, you need less effort to maintain that movement and a very big effort to stop it completely."   Example: for the oscillation margin 10 (Series Resistor Rs_max = 560 Ω) The CDAC/ISEL area where the oscillation starts and propagates in the internal blocks is defined (green color raws) in the table below. The frequency accuracy is indicated for some of them:     32kHz crystal NXP recommends to use the quartz NDK NX2012SE (EXS00A-MU01517) or NDK NX2012SA (EXS00A-MU00801) to be compliant with the +/-500ppm required in Bluetooth LE. using the current SDK, the oscillation margin with this quartz is 10 with some limitation on the Crystal load capacitance selection (Cap_Sel) and the Oscillator coarse gain amplifier (ESR_Range) values, with some drawback respectively on the power consumption and the clock accuracy. For an oscillation margin at 10 for instance, the Capacitor value from the databank (Cap_Sel) is limited (green area) as shown in the graph below:   Example: for an oscillation margin at 6.3, if the load cap is set at 12pF and the ESR_Range to 3, the 32kHz frequency accuracy will be around -23ppm. From this point, the oscillation margin can be enlarged to 10.3 by decreasing the load cap to 6pF but the accuracy will be degraded (110ppm).   For an Oscillation margin at 10, the graph below is showing the ESR_Range versus the load cap. The possible load cap variation range (in green) is larger when the ESR_Range increases:   Example: at oscillation margin 10.3, the clock accuracy can be improved from 111ppm to 21ppm by setting the ESR_range 2 to an ESR_Range 3 but the current consumption will be increased to 169.5nA. Another important point is that for a given ESR_Range value, getting higher the load cap is much more increasing the current than in the example above.   Remark: Under a high oscillation margin condition, the crystal voltage will be smaller.   Other possible ways to improve the oscillation margin exist: - Use external capacitor instead of internal capacitor banks. Oscillation margin goes up to 10. - Use the internal 32kFRO is supported for BLE (target:+/-500ppm)              
View full article
KW45’s three-core architecture integrates a 96 MHz CM33 application core, dedicated CM3 radio core and an isolated EdgeLock Secure Enclave. The Flash-based radio core with dedicated SRAM delivers a highly configurable and upgradeable software-implemented radio, freeing resources on the main core for customer application space. The Bluetooth Low Energy 5.3-compliant radio supports up to 24 simultaneous secure connections. The EdgeLock Secure Enclave’s isolated execution environment provides a set of cryptographic accelerators, key store operations and secure lifecycle management that minimizes main core security responsibilities. The KW45 MCU additionally integrates FlexCAN, helping enable seamless integration into an automobile’s in-vehicle or industrial CAN communication network. The FlexCAN module can support CAN’s flexible data rate (CAN FD) for increased bandwidth and lower latency. KW45 Block Diagram KW45 Architecture Block Diagram Documents Reference Manual Datasheet Errata Secure Reference manual** Certifications SESIP Cert SESIP ST PSA Certification RED Certification EUROPEAN UNION DECLARATION OF CONFORMITY (EVK) EUROPEAN UNION DECLARATION OF CONFORMITY (LOC) Japan MIC KW45-LOC _TELEC-20250221 see attached below Bluetooth Specifications Bluetooth_5.0_Feature_Overview  Bluetooth_5.1_Feature_Overview  Bluetooth_5.2_Feature_Overview Bluetooth_5.3_Feature_Overview Bluetooth_5.4_Feature_Overview Bluetooth_6_Feature_Overview Evaluation boards KW45 KW45-EVK KW45-EVK Schematic KW45-EVK Design Files KW45-EVK User manual KW45-LOC User manual KW45-EVK Getting Started Application Notes Software, Hardware and Peripherals: AN14122 : How to use RTC on KW45 This application note describes how to configure and use the RTC peripheral in a BLE demo AN14141 : Enabling Watchdog Timer Module on KW45 Bluetooth Low Energy Connectivity Stack This application note describes the process to implement the WDOG timer in a Connectivity Stack demo. AN13855 : KW45/K32W1 Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device This Application note provides the steps and process for integrating the Over the Air Programming Client Service into a BLE peripheral device. AN13584 : Kinetis KW45 and K32W1 Loadpull Report This application note describes measurement methodology and associated results on the load-pull characteristics. AN13860 : Creating Firmware Update Image for KW45/K32W1 using OTAP tool This application note provides the steps to create and upgrade the image on the KW45 board via OTAP. AN14077 : Steps to migrating KW45 (1MB) to KW45 (512kB) This application note describes the initial steps require to migrate from 1MB flash to 512kB flash. Power Management: AN13230 : Kinetis KW45 and K32W1 Bluetooth LE Power Consumption Analysis This application note provides information about the power consumption of KW45 wireless MCUs, the hardware design and optimized for low power operation. AN13831 : KW45/K32W1 Power Management Hardware This application note describes the usage of the different modules dedicated to power management in the KW45/K32W1 MCU. RF: AN13687 : K32W1 Connectivity test for 802.15.4 Application This application note describes how to use the connectivity test tool to perform K32W1 802.15.4 RF performance. AN13728 : KW45 RF System Evaluation Report for Bluetooth LE and IEEE 802.15.4 Applications This application note provides the radio frequency evaluation test results of the KW45 board for BLE (2FSK modulation) and for IEEE 802.15.4 (OQPSK modulation) applications. Also describes the setup and tools that can be used to perform the tests.  AN14098: KW45-LOC RF Test Report This application note provides basic RF test result of the KW45B41Z localization board.  AN13228 : KW45-EVK RF System Evaluation Report for BLE Applications This application note provides the RF evaluation test result of the KW45B41Z-EVK for BLE application using two frequency Shift Keying modulation. AN13229 : KW45-EVK Co-existence with RF System Evaluation Report for BLE application This application note provides the RF evaluation test results of the KW45B41Z-EVK for BLE application (2FSK modulation) AN13512 : Kinetis Wireless Family Products BLE Coexistence with Wi-Fi Application This application note provides the K32W1/4X low energy family products immunity on Wi-Fi signals and methods to improve coexistence with Wi-Fi  Security: AN13859 : KW45/K32W1 In-System Programming Utility This application note provides steps to boot KW45/K32W1 MCU in ISP mode and establish various serial connections to communicate with the MCU. AN1403 : Programming the KW45 Flash for Application and Radio Firmware via Serial Wire Debug during mass production This application note describes the steps to write, burn and programming all the necessary settings via SWD in mass production.  AN13883 : Updating KW45 Radio Firmware Via ISP Using SPSDK This application note provides steps to boot KW45/K32W1 MCU in ISP mode and update the radio firmware with secure binary. AN14109 : KW45 and K32W148 Secure  Boot Using the SEC Tool This application note provides steps to do secure boot KW45/K32W1 MCU using signed images and secure binaries on the SEC GUI tool. AN13838 :  KW45 and K32W148 Secure  Boot Using the SPSDK Command line Tool This application note provides steps to do secure boot KW45/K32W1 MCU using signed images and secure binaries on the SPSDK command line tool. AN13931 : Managing Lifecycles on KW45 and K32W148 This application note provides steps to do transition lifecycles KW45/K32W1 MCU using the SEC GUI and SPSDK command line tools.  AN14174: KW45/K32W148 Flash Encryption using NPX This application note provides steps to do enable on-the-fly encryption on KW45/K32W1 MCU. AN14158: Debug Authentication on KW45/ K32W148 This application note describes how to do debug authentication to securely debug an application in the field.  AN14544 : EdgeLock 2GO Services for MPU and MCU This application note introduces the EL2GO services for NXP devices. This allows trust provisioning of the device in an untrusted environment.  Support If you have questions regarding KW45, please leave your question in our Wireless MCU Community! here   Useful Links The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial)... Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands. Kinetis (K32/38/KW45 & K32W1/MCXW71) Power Profile Tools:  This page is dedicated to the Kinetis (KW35/KW38/KW45) and MCX W7x (MCX W71) Power Profile Tools. It will help you to estimate the power consumption in your application (Automotive or IoT) and evaluate the battery lifetime of your solution. KW45/K32W1 32MHz & 32kHz Oscillation margins: this article provides the properly configuration for the Oscillation margins for the circuit. KW45 Based CS 1 to Many Demo NXP - Channel Sounding   Training   BLE Introduction  RF Switch Comparison Absorptive/Reflective Standards Comparison ETSI / FCC / ARIB requirements BLE Channel Sounding  - Overview BLE Channel Sounding - RF Hardware BLE Channel Sounding - ANSYS Modeling Tools  BLE Channel Sounding - Antenna Prototypes Validation Measurements     Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development  Development Tools  SDK builder: The MCUXpresso SDK brings open-source drivers, middleware, and reference example application to speed your software development. SDK GitHub: SDK open-source Drivers, middleware and reference examples in Github NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board. Config Tool: MCUXpresso Config Tools, an integrated suite of configuration tools, these configuration tools allow developers to quickly build a custom SDK and leverage pins, clocks and peripheral to generate initialization C code or register values for custom board support. SDK Examples for Wireless MCUs: The wireless examples feature many common Bluetooth configurations. **For secure files is necessary to request additional access. 
View full article
Channel Sounding 
View full article
Matter support in Visual Studio Code (VS Code) is now open to all developers. MCUXpresso extension for VS Code v24.12.71 integrates the Matter toolchain for development on Windows, macOS and Linux.  It can be installed by visiting Microsoft’s Marketplace for VS Code. The following steps will set up your Windows system to develop Matter on NXP devices. This Getting Started process takes ~1 hour.  This is similar time it takes with flawless CLI setup. Import Matter repo takes ~30 minutes (Clone Matter repo; run bootstrap setup script)  Import first project for a board takes @~10 minutes (SDK repo download - 1st time every board) Additional projects can then be quickly imported/built. 1. Install Pigweed Project Automation Tool Pigweed is used for easier automation of building, testing, and linting GN and CMake projects.  Matter uses GN, so Pigweed is used by the maintainers of the project.  Complete the following to allow the Matter Bootstrap to properly modify/install the repository. Launch a Terminal in Administrator mode to allow operations to complete successfully. Ensure that Developer Mode is enabled. This can also be done by running the following command as an administrator: REG ADD HKLM\Software\Microsoft\Windows\CurrentVersion\AppModelUnlock /t REG_DWORD /v AllowDevelopmentWithoutDevLicense /d 1 /f\"" Enable long file paths. This can be done using  regedit  or by running the following command as an administrator: REG ADD HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystem /v LongPathsEnabled /t REG_DWORD /d 1 /f  Enable Git symlinks: git config --global core.symlinks true For more information on these settings visit Get started with Pigweed - Pigweed  2. Install Visual Studio Code (VS Code) Microsoft allows users to quickly install VS Code from https://code.visualstudio.com/download. The link allows the user to select the appropriate download for their OS.  The following instructions are for a Windows installation.  However, most of the following steps also apply to Mac and Linux users. It can be helpful for new users to directly install VS Code and the NXP extension.  This can be done by sharing one of two links:  vscode:extension/NXPSemiconductors.mcuxpresso https://marketplace.visualstudio.com/items?itemName=NXPSemiconductors.mcuxpresso  If VS Code exists on the system, the user will be taken to the NXP MCUXpresso for VS Code extension in the Microsoft Marketplace.  If VS Code is NOT installed on the system the user will be guided through the install of VS Code.  At this point the VS Code application should be installed on the laptop. 3. Install MCUXpresso for VS Code Extension The user can install or update the MCUXpresso for VS Code extension from within VS Code.  The following steps outline how.  A short clip is included to show the steps. Open VS Code.  Launch program from desktop. Open the Extensions Marketplace.  Click on Icon of 4 blocks in left navigation  or use Ctrl-Shft-X. Search "NXP" or "Mcuxpresso" in the Extension search window at the top left. MCUXpresso for VS Code extension will be displayed.  Click on listing. Click on blue Install button in the Extension Overview that is opened in the editor. The Extension is properly installed when the following NXP icon is shown in left navigation.  At this point the VS Code application now includes the NXP MCUXpresso extension. 4. Run MCUXpresso Installer for Tool Dependencies It is now necessary to install other tool dependencies to properly use VS Code for MCUXpresso, Zephyr and/or Matter. NXP provides the MCUXpresso Installer utility to simplify properly meeting these tool dependencies.  The following steps list how to use the installer for a Matter system.  A short clip is included to show the steps. Click on "Open MCUXpresso Installer" found under Quickstart Panel in upper left. The MCUXpresso Installer will launch if already installed.  NOTE: If the Installer is not found, the user should select the blue "Download" button in the bottom right notification. Select the following from the MCUXpresso Installer list of available tools: Matter Developer Arm GNU Toolchain Standalone Toolchain Add-ons LinkServer Click the blue "Install" button and wait until installation progress shows complete Restart VS Code so that new settings are active At this point the VS Code application now includes the NXP MCUXpresso extension, and the laptop has any other tools required to begin Matter installation. 5. Import NXP Matter Repository The MCUXpresso for VS Code extension simplifies how the user can add Matter to their workspace.  The repository import wizard automates most of the steps required for a user to get started with Matter. The following steps show how to add Matter Repository.  2 short clips are included to show the steps. Click on "Import Repository" found under Quickstart Panel in upper left. Click Repository found in the wizard's Remote tab. Select "NXP Matter".  This automatically targets the NXP/Matter repo found on GitHub. Enter a desired location to clone/store the NXP Matter repository.  Closer to C:/ is better. Select "release/v1.4.0" listed as an available version under Revision: Click Import The import process can take ~30 minutes depending on network bandwidth and IT software. NOTE: This is similar amount of time when using CLI in a terminal.   After the repo is cloned, the Matter Bootstrap script is used to setup matter environment. At this point the user laptop has a valid Matter workspace.  The workspace is now capable of importing and building Matter projects. 6. Import First Matter Project The MCUXpresso for VS Code extension includes an Import Example wizard that simplifies adding Matter projects to a workspace.  The following instructions show how to import a project from the NXP Matter repository.   A short clip is included to show the steps. Click "Import Example from Repository" from the Quickstart Panel in the upper left. Select the Matter Repository from the drop-down options for Repository. Select the desired Toolchain from the drop-down options for Toolchain.  A GNU Toolchain should be available from previous MCUXpresso Installer steps. Select the target board from the drop-down options for Board.  The listed boards are supported in the NXP Matter repo. Select the desired project from the Template drop-down options.  Currently there are "contact-sensor-app" and "lighting-app". Click Create blue button. At this point there is a Matter project in the workspace.  The project can be explored with the provided project properties and file explorer views. 7. Build Matter Project Building the project is the final step for Getting Started with a Matter project in VS Code.  The extension has properly setup the project toolchain and will build successfully.  The NXP extension reduces the setup time by not importing the SDK for all supported boards.  The board SDK is automatically imported/cloned when it is not located on the 1st build for a board.  Successive projects for the same board will not require this additional step/delay. The following steps show how to build a matter project in the workspace.  A short clip is included to show the steps.  Select the Matter project listed under the Projects pane located in the primary left sidebar.  When selected, project control icons are revealed to the left of the project name. Click on the Build icon.   Verify the build was successful by viewing the binary files with File Explorer.  Click the File Explorer icon to the right of project name or in the upper left of the side bar navigation.  The binary is found under the project's \out\debug folder. This exercise on "Getting Started with Matter" is completed.  At this point the Matter project imported to the workspace was successfully built. 
View full article
The MCX W71 Wireless Microcontroller features a 96 MHz Arm® Cortex®-M33 core coupled with a multiprotocol radio subsystem supporting Matter™, Thread®, Zigbee® and Bluetooth® Low Energy. The independent radio subsystem, with a dedicated core and memory, offloads the main CPU, preserving it for the primary application and allowing firmware updates to support future wireless standards. The MCX W71x also offers advanced security with an integrated EdgeLock® Secure Enclave Core Profile and will be supported by NXP's EdgeLock 2GO cloud services for credential sharing. The MCX W71x family supports industrial and IoT devices as a single chip solution or by acting as a coprocessor in a hosted architecture.   MCX W71 Block Diagram   Documents MCX W71 Reference Manual MCX W71 Data Sheet Errata Secure Reference manual** Certifications   Evaluation boards FRDM-MCXW71 Page FRDM-MCXW71 Schematic FRDM-MCXW71 Design Files FRDM-MCXW71 User Manual FRDM-MCXW71 Getting Started   Application notes AN14398: How to use RTC on FRDM-MCXW71 This application note describes how to configure and use the RTC peripheral in a BLE demo. AN14416: Enabling Watchdog Timer Module on FRDM-MCXW71 Bluetooth Low Energy Connectivity Stack This application note describes the process to implement the WDOG timer in a Connectivity Stack demo.  AN14396: MCX W71 Integrating the OTAP Client Service into a Bluetooth LE Peripheral Device This Application note provides the steps and process for integrating the Over the Air Programming Client Service into a BLE peripheral device. AN14391: MCX W71 Loadpull Report This application note describes measurement methodology and associated results on the load-pull characteristics. AN14394: Creating Firmware Update Image for MCX W71 using OTAP tool This application note provides the steps to create and upgrade the image on the MCX W71 board via OTAP.  AN14389: MCXW71 Bluetooth LE Power Consumption Analysis This application note provides information about the power consumption of MCXW71 wireless MCXs, the hardware design and optimized for low power operation.  AN14387: MCXW71 Power Management Hardware This application note describes the usage of the different modules dedicated to power management in the MCXW71 MCU. AN14399: MCXW71 Connectivity test for 802.15.4 Application This application note describes how to use the connectivity test tool to perform MCXW71 802.15.4 RF performance. AN14374: FRDM-MCXW71 RF System Evaluation Report for Bluetooth LE and IEEE 802.15.4 Applications This application note provides the radio frequency evaluation test results of the FRDM-MCXW71 board for BLE (2FSK modulation) and for IEEE 802.15.4 (OQPSK modulation) applications. Also describes the setup and tools that can be used to perform the tests.  AN14427: MCXW71 In-System Programming Utility This application note provides steps to boot MCXW71 MCU in ISP mode and establish various serial connections to communicate with the MCU. AN14397: Programming the MCXW71 Flash for Application and Radio Firmware via Serial Wire Debug during mass production This application note describes the steps to write, burn and programming all the necessary settings via SWD in mass production.    Zigbee Protocol Zigbee 3.0 Getting Started: This Application Note provides guidance towards the best starting point for the development of your own Zigbee 3.0 device firmware. Zigbee 3.0 Base Device Template: This Application Note provides example applications to demonstrate the features and operation of the Base Device in a Zigbee 3.0 network that employs the NXP DK006 Zigbee 3.0 microcontrollers. Zigbee 3.0 Developing Devices: This Application Note describes how to develop a Zigbee 3.0 On/Off Sensor using the Base Device Template End Device application as a starting point. The On/Off Sensor described in this Application Note is based on Zigbee device types from the Zigbee Lighting and Occupancy (ZLO) Device Specification Zigbee 3.0 Light Bulbs: This Application Note provides example applications for light bulbs in a Zigbee 3.0 network that employs the NXP DK006 wireless microcontrollers. Zigbee 3.0 IoT Control Bridge: This guide provides information to allow users to connect to the Control Bridge using a Graphical User Interface (GUI), which simulates a host, to operate the Zigbee network. It also describes the serial protocol used to interface with the Control Bridge, as well as the payloads of all relevant commands and responses. Zigbee 3.0 Green Power Devices: This Application Note provides guidance towards the best starting point for the development of your own Zigbee 3.0 device firmware. Zigbee 3.0 Sensors: This Application Note provides example applications for sensors in a Zigbee 3.0 network that employs the NXP DK006 Zigbee 3.0 wireless microcontrollers. Zigbee 3.0 Controller and Switch: his Application Note provides example applications for a controller and a switch in a Zigbee 3.0 network that employs the NXP DK006 wireless microcontrollers. The Application Note also includes an example of a typical Zigbee Green Power (GP) Energy Harvesting switch in a Zigbee 3.0 network. Zigbee 3.0Developing Clusters: This Application Note describes how to develop a Zigbee 3.0 Window Covering Device using the Base Device Template Router Device application as a starting point. This Application Note can be used in two ways: As a starting point for creating a Window Covering device using the functional example created in the final step. As a guide to creating devices and clusters not included in the NXP ZCL implementation including manufacturer-specific devices and cluster. Support If you have questions regarding MCX W71, please leave your question in our Wireless MCU Community! here   Useful Links The best way to build a PCB first time right with KW45 (Automotive) or K32W1/MCXW71 (IoT/Industrial) - NXP Community : In this community provides the important link to build a PCB using a KW45 or K32W148 and MCXW71 and all concerning the radio performances, low power and radio certification (CE/FCC/ICC) How to use the HCI_bb on Kinetis family products and get access to the DTM mode:  This article is presenting two parts: How to flash the HCI_bb binary into the Kinetis product. Perform RF measurement using the R&S CMW270 BLE HCI Application to set transmitter/receiver test commands: This article provides the steps to show how user could send serial commands to the device. Bluetooth LE HCI Black Box Quick Start Guide : This article describes a simple process for enabling the user controls the radio through serial commands.   Training MCX W71 Training, Secure MCUs for Matter, Zigbee, BLE MCX W Series Training - NXP Community   Equipment Wireless Equipment: This article provides the links to the Equipment that helps to the project development  Development Tools  NXP MCUXpresso: MCUXpresso IDE offers advanced editing, compiling and debugging features with the addition of MCU-Specific debugging. Supports connections with all general-purpose Arm Cortex-M.  VSCode: MCUXpresso for Visual Studio Code (VS Code) provides an optimized embedded developer experience for code editing and development. Zephyr RTOs  NXP Application Code Hub: Application Code Hub (ACH) repository enables engineers to easily find microcontroller software examples, code snippets, application software packs and demos developed by our in-house experts. This space provides a quick, easy and consistent way to find microcontroller applications. NXP SPSDK: Is a unified, reliable, and easy to use Python SDK library working across the NXP MCU portfolio providing a strong foundation from quick customer prototyping up to production deployment. NXP SEC Tool: The MCUXpresso Secure Provisioning Tool us a GUI-based application provided to simplify generation and provisioning of bootable executables on NCP MCU devices. NXP OTAP Tool: Is an application that helps the user to perform an over the air firmware update of an NXP development board.   **For secure files is necessary to request additional access. 
View full article
Wireless Equipment: Ellisys:  Ellisys is a leading worldwide supplier of advanced protocol test solutions for Bluetooth®, Wi-Fi, WPAN, USB 2.0, SuperSpeed USB 3.1, USB Power Delivery, USB Type-C, DisplayPort and Thunderbolt technologies.  USB, Bluetooth and WiFi Protocol Test Solutions  Bluetooth Vanguard - Advanced Bluetooth Analysis System Bluetooth Qualifier - Bluetooth Qualification System   RFcreations:     RFcreations is a core team of highly skilled and knowledgeable, professional engineers with decades of experience across the design and development of both RF and digital hardware, embedded, protocol stacks and UI software mini-moreph morephCS   Teledyne Lecroy:    offers an extensive range of test solutions to help with design, development, and deployment of devices and systems frontline-x240 Wireless Protocol Analyzer  frontline-x500e Wireless Protocol Analyzer  Rohde&Schwarz:        is a global technology group striving for a safer and connected world. Offers Test & Measurement, Technology Systems and Networks & Cybersecurity Divisions R&S CMW270 wireless connectivity tester Useful links:  Top Online Bluetooth LE learning Resource Ellisys Bluetooth Video Series RFcreations Bluetooth Sniffers and Test Tools Learn Bluetooth Low Energy in a single weekend
View full article
Aiming to increase the reach of card and mobile payment, Europay, Mastercard and Visa (EMV) point of sale (POS) terminals are getting more lightweight, replacing hardware security with software and back-end security. Off-the-shelf mobile devices, like your smart phone, can become an acceptance point for payment cards, a so-called SoftPOS.
View full article
MIFARE DESFire EV1 supports the APDU message structure according to ISO/IEC 7816-4 for an optional wrapping of the native MIFARE DESFire EV1 APDU format and for the additionally implemented 7816-4 commands from a practical point of view.
View full article
 Introduction The KW45-EVK & FRDM-MCX W71 include an RSIM (Radio System Integration Module) module with an external 32 MHz crystal oscillator and 32kHz external oscillator. 32MHz clock source reference is mainly intended to supply the Bluetooth LE Radio peripheral, but it can be used as the main clock source of the MCU as well. This oscillator includes a set of programmable capacitors to support crystals with different load capacitance needs. Changing the value of these capacitors can modify the frequency the oscillator provides, that way, the central frequency can be tuned to meet the wireless protocol standards. This configurable capacitance range is from C: 3.74pF to C: 10.67pF and it is configured through the RFMC Register XO_Test field at the CDAC. The KW45 comes preprogrammed with a default load capacitance value (0x1Eh). However, since there is variance in devices due to tolerances and parasite effects, the correct load capacitance should be checked by verifying that the optimal central frequency is attained.  You will need a spectrum analyzer to measure the central frequency. To find the most accurate value for the load capacitance, it is recommended to use the Connectivity Test demo application. 32kHz clock source reference is mainly intended to run in low power when the 32MHz clock is switched off. This 32kHz clock enable to leave the low power mode and enter in Bluetooth LE events. Adjusting 32MHz Frequency Example   Program the KW45 /MCX W71 Connectivity Test software on the device. This example can be found in SDK_2_15_000_KW45B41Z-EVK_MR5\boards\kw45b41zevk\wireless_examples\genfsk\connectivity_test folder from your SDK package. Baremetal and FreeRTOS versions are available. In case that KW45-EVK board is being used to perform the test, you should move the 15pF capacitor populated in C3 to C4, to direct the RF signal on the SMA connector.                                   3. Connect the board to a serial terminal software. When you start the application,              you will be greeted by the NXP logo screen: Press the enter key to start the test. Then press "1" to select "Continuous tests":          5. Finally, select "6" to start a continuous unmodulated RF test. At this point, you should be able to measure the signal in the spectrum analyzer. You can change the RF channel from 0 to 127 ("q" Ch+ and "w" Ch- keys), which represents the bandwidth from 2.360GHz to 2.487GHz, stepping of 1MHz between two consecutive channels. To demonstrate the trimming procedure, this document will make use of channel 42 (2.402GHz) which corresponds to the Bluetooth LE channel 37. In this case, with the default capacitance value, our oscillator is not exactly placed at the center of the 2.402GHz, instead, it is slightly deflected to 2.40200155 GHz, as depicted in the following figure:         6. The capacitance can be adjusted with the "d" XtalTrim+ and "f" XtalTrim- keys. Increasing the capacitance bank means a lower frequency. In our case, we need to increase the capacitance to decrease the frequency. The nearest frequency of 2.402 GHz was 2.40199940 GHz        7. Once the appropriate XTAL trim value has been found, it can be programmed as default in any Bluetooth LE example, changing the BOARD_32MHZ_XTAL_CDAC_VALUE constant located in the board_platform.h file:   Adjusting 32kHz Frequency Example   You could adjust the capacitor bank on the 32kHz oscillator. You need to observe the 32kHz frequency at pin 45 (PTC7) using an spectrum analyzer or a frequency meter. Inserting this below code in the main(void) in your application: Hello_world application in this example. 32kHz frequency is not active by default on pin45(PTC7). You need to configure the OSC32K_RDY at 1 in the CCM32K register Status Register (STATUS) field to observe the 32kHz frequency at pin 45 (PTC7). Configure the CAP_SEL, XTAL_CAP_SEL and EXTAL_CAP_SEL field available in the CCM32K register 32kHz Oscillator Control Register (OSC32K_CTRL).       XTAL_CAP_SEL and EXTAL_CAP_SEL values are from 0pF (0x00h) to 30pF (0x0Fh). You could configure those 2 registers in the clock_config.c file. Default values are 8pF for both registers.        
View full article
Some users want to use SDIO signals on M.2 connector for WiFi card. In default linux bsp, there is no problem using imx8mp-evk-usdhc1-m2.dts, usdch1 driver can normally loaded, and detect WiFi module, But default android bsp doesn't support it, even if using corresponding device tree, usdch1 driver can NOT be loaded correctly, Because default android bsp doesn't load pwrseq_simple.ko, which is used by usdhc1 node. Detailed steps on enabling usdhc1 in the attached document, hope it can help users who wants to use M.2 SDIO WiFi card. [Note] For other android bsp version, users can also refer to the steps in attached document.   Thanks! Regards, Weidong Sun
View full article
On the KW45 product, there is a way to enable the 32kHz clock without using a crystal externally. Indeed, a FRO32K can be used instead. this article proposes to show you at a glance how to activate it and which performances to expect in comparison to a 32kHz crystal.  This Crystal-Less mode allows to reduce the cost of the system, without compromising the 32 kHz clock accuracy thanks to a software calibration mechanism called SFC standing for Smart Frequency Calibration. One other advantage of the FRO32K is the shorter start up time, including the calibration. The FRO32K clock is calibrated against the 32 MHz RF oscillator through the Signal Frequency Analyzer (SFA) module of KW45. Software enablement: The Crystal-less feature is available since the SDK version 2.12.7 (MR4) , all measurements in this document are done with softwares based on this version of SDK. To enable the Crystal-Less mode, simply define the compilation flag gBoardUseFro32k_d to 1 in board_platform.h or in app_preinclude.h. In this mode, the SFC module measures and recalibrates the FRO32K output frequency when necessary. This typically happens at a Power On Reset, or when the temperature changes, or periodically when the NBU is running. By using this mode, higher power consumption is expected. The FRO32K consumes more power than the XTAL32K in low power mode (around 350nA), and the NBU wakes up earlier while FRO32K is used, which also entails a higher power consumption.   FRO32K vs Xtal32K performances: For these measurements, we used an early FRO32K delivered feature but, even if it is still in experimental phase, the results below will already give you some information.    Clock accuracy at room temperature:    In steady state, the output frequency of the FRO32K is even more stable than that of the XTAL32K thanks to the SFC module. The clock frequency accuracy of the XTAL32K is a bit better than the FRO32K, however, both are within the permitted accuracy range and are compliant with the Bluetooth Low Energy specification. Clock accuracy after recalibration (triggered by a temperature variation):   This test proved that the FRO32K provided a source clock that is within the target accuracy range even during a temperature variation. Throughput test at room temperature: Throughput measurements are performed using two different clock sources to verify if there is any connection lost due to the potential clock drift entailed by using the FRO32K as a clock source. The BLE_Shell demo application is used for the throughput measurement. (refer to KW45-EVK Software Development Kit). The DUT is programmed with software using either the XTAL32K or the FRO32K as the source clock. After the communication establishment, the bit rate measurement is triggered manually, and the result is displayed on the prompt window.  Results: Two clock configurations show identical performance, which proves that the 32 kHz crystal-less mode presents no disconnection and no performance degradation. Throughput test over a temperature variation: it is the same test set up as above but within a 60 °C temperature variation. The results are identical to previous ones. No disconnection or performance degradation is detected. Conclusion Various tests and measurements proved that the FRO32K can be used as the 32 kHz clock source instead of the XTAL32K, with the help of the SFC module. It is capable of providing an accurate and stable 32 kHz clock source that satisfies the requirements of connectivity standards. However, please note that this feature is still in experimental phase, tests are still ongoing to ensure that the feature is robust in any circumstances. Customers who want to enable this feature in production must validate this solution according to their own use cases. For more detailed information, a draft version of the application note is attached to this article but an updated version will be available on NXP.com website when a new SDK is released.
View full article
Generality on the Oscillation Margin Outline It is a margin to the oscillation stop and the most important item in the oscillation circuit. This margin is indicated by ratio based on the resistance of crystal, and it shows how amplification oscillation capability the circuit has. The oscillation circuit can theoretically operate if the oscillation margin is 1 or more. However, if oscillation margin is close to 1, the risk of operation failure will increase on module due to a too long oscillation start up time and so on. Such problems will be able to be solved by a larger oscillation margin. It is recommended to keep 3 times or more as oscillation margin during the startup of the oscillation. Factor of 10 is commonly requested for Automotive at startup and 5 for IoT market. However, some providers accept to have 3 times as oscillation margin for steady state. Here below is an oscillation example to explain better the phenomenon: At start up, the configuration is set internally by the hardware in order to be sure to start the oscillation, the load capacitor is 0pF. After this time, it is the steady state and the load capacitor from the internal capabank is taken into account.     If load capacitor is not set correctly with the right oscillator gain, the oscillation will not be maintained after the start up.   The oscillator gain value will also depend on the resisting path on the crystal track.  A good way to evaluate it is to add a resistor on the crystal path and try to launch the oscillation. In the SDK, the gain and the load capacitor can set directly in the application code.   Calculation The oscillation margin is able to be calculated as follows: The oscillation margin calculation is based on the motional resistor Rm by formula below :               Example: for the EVK board’s 32kHz crystal (NX2012SE) ESR   80000,0 ohm Rm1   79978,2 ohm Lm1    3900 H Cm1   6,00E-15 F C0      1,70E-12 F CL      1,25E-08 F fr        32901,2 Hz fosc    32771 Hz Series Resistor Rsmax      7,50E+05 Ohm Oscillation Margin   10,3   Measurement Requirements for measurement PCB Crystal unit (with equivalent circuit constants data) Resistors (SMD) Measurement equipment (Oscilloscope, Frequency counter or others capable to observe oscillation) Add a resistor to the resonator in serial and check if the oscillation circuit works or not. If the oscillation is confirmed by 2), change the resistor to larger. If there is no oscillation, change the resistor to smaller. Find out the maximum resistor (=Rs_max) which is the resistor just before the oscillation stop. Measure the oscillating frequency with Rs_max. Calculate the oscillation margin based on the Rs_max.   Notes The Oscillation margin is affected not only by crystal characteristics but also parts that compose the oscillation circuit (MCU, capacitor and resistor). Therefore, it is recommended to check the oscillation margin after the MCU functionality is checked on your module. The series resistor is only for the evaluation. Please do not use this resistor in actual usage. It is recommended to check the functionality of your module also. It is possible that the module does not work correctly due to a frequency shift on oscillation circuit and so on. Jig and socket could be used in measurement, but stray of them will give influence for oscillation margin.   KW45/K32W1 product oscillation margin overview 32MHz crystal NXP recommends to use the quartz NDK NX1612SA (EXS00A-CS14160) or NDK NX2016SA (EXS00A-CS14161) to be compliant with the +/-50ppm required in Bluetooth LE. Using the current SDK, NXP guarantees an oscillation margin of 10 for startup commonly used by Automotive customers and 3 for steady state. Higher oscillation margin can be reached by using higher ISEL and CDAC parameters with some drawback respectively on the power consumption and the clock accuracy. ( the load capacitance bank (CDAC) and the oscillator amplifier current (ISEL)) NDK recommended / target values for oscillation margin is informed case by case. On general basis requested oscillation margin has to be between recommended value and 3 times this value. "NDK quartz provider (FR) explains this oscillation margin specification is only mandatory at the start-up phase, not at the steady state. Starting the oscillation is the phase that needs more energy. That's why the gain of the oscillator gain is at the maximum value which means not optimal consumption. When the oscillation stability is reached, the gain could be reduced to save power. The oscillation will not be affected.  Keep in mind a quartz oscillates by mechanical effect. So, when the oscillation is starting you need the highest energy to emulate it. By its own inertial, you need less energy to maintain the mechanical oscillation. NDK provides a good picture of this. Starting up a crystal into oscillation is like a train what you would like to start moving. At the beginning the train is stopped and you need a lot of energy to start running. When the train is running at its nominal speed, you need less effort to maintain that movement and a very big effort to stop it completely."   Example: for the oscillation margin 10 (Series Resistor Rsmax = 560W) The CDAC/ISEL area where the oscillation starts and propagates in the internal blocks is defined (‘oscill’) in the table below.     32kHz crystal NXP recommends to use the quartz NDK NX2012SE (EXS00A-MU01517) or NDK NX2012SA (EXS00A-MU00801) to be compliant with the +/-500ppm required in Bluetooth LE. using the current SDK, the oscillation margin with this quartz is 10 with some limitation on the Crystal load capacitance selection (Cap_Sel) and the Oscillator coarse gain amplifier (ESR_Range) values, with some drawback respectively on the power consumption and the clock accuracy. For an oscillation margin at 10 for instance, the Capacitor value from the databank (CapSel) is limited (green area) as shown in the graph below: Example:  for an oscillation margin at 6.4, if the load cap is set at 14pF and the ESR_Range to 3, the 32kHz frequency accuracy will be around 91ppm. From this point, the oscillation margin can be enlarged to 10.3 by decreasing the load cap to 10pF but the accuracy will be degraded (183ppm). For an Oscillation margin at 10, the graph below is showing the ESR_Range versus the load cap. The possible load cap variation range (in green) is larger when the ESR_Range increases:   Example: at oscillation margin 10.3, the clock accuracy can be improved from 213ppm to 183ppm by setting the ESR_range 2 to an ESR_Range 3 but the current consumption will be increased to 169.5nA. An other important point is that for a given ESR_Range value, getting higher the load cap is much more increasing the current than in the example above.   Remark: Under a high oscillation margin condition, the crystal voltage will be smaller.   Other possible ways to improve the oscillation margin exist: - Use external capacitor instead of internal capacitor banks. Oscillation margin goes up to 10. - Use the internal 32kFRO is supported for BLE (target:+/-500ppm)
View full article
       The article will describe how to configure A2DP audio application Based On NXP platform and WIFI/BT chipset step by step. Users can easily make her A2DP audio based on NXP WIFI module work normally by following steps in the article. Environment for the validation Hardware Platform        i.MX8MN-EVK Software Kernel version: L5.4.70_2.3.0 rootfs : imx-image-multimedia WiFi module        AW-CM358SM: NXP 88W8987 chipset   For more detailed information, see attachment, please!   NXP CAS-TIC wireless MCU team Weidong Sun    
View full article
This article describes how to use the tcpdump tool to capture wireless network data packets. The test block diagram is as follows: For more detailed information, See attachment,please!   NXP CAS-TIC Wireless MCU team Weidong Sun
View full article
OSZAR »